关于流化床干燥机的各方面知识解析
时间:2017-06-06 阅读:8218
一、单圆筒流化干燥机
单层流化床可分为连续、间歇两种操作方法。连续操作停留时间分布较广,实际需要的平均停留时间较长,因而多应用于比较容易干燥的产品,或干燥程度要求不是很严格的产品。国内于1969年设计建造了一台直径为3000mm的大型流化床干燥装置,用以干燥氯化铵,单层流化床也可用于含水率较高的物料的干燥,对含水率为35%的葡萄糖酸钙的干燥就是一例。操作是间歇式的,卸料时分布板翻转90°,物料于床层下部卸出。用间歇操作的单层流化床干燥机也成功用于含水率为20%的催化剂的干燥,其出料是用高速气流将物料吹入旋风分离器后卸出。对于一些颗粒度不均匀并有一定粘性的物料,多采用在床层内装有搅拌器的低床层操作。酐酪素的干燥以及椰蓉的干燥,就是用该法进行的。
单层圆筒型流化干燥机,一般是用于较易干燥产品或干燥程度不严格的产品。由于流化床内粒子接近于*混合状态,为了要减少未干燥粒子的排出,就必须延长平均停留时间,于是流化床高度必有所提高,而压力损失也随着增大。由于这一特性,就必须使用温度尽可能高的热空气藉以提高热效率,而适当减低床层高度。故单层圆筒型流化床干燥机只适宜于干燥含表面水及对干燥程度不严格的物料。
二、多层振动流化床干燥机
采用多层流化床干燥机,可以增加物料的干燥时间,改善干燥产品含水的均匀性,从而易于控制产品的干燥质量。但是,多层流化床干燥机因层数增加,分布板相应增多,床层阻力增加。同时,各层之间,物料要定量地从上层转移至下层,又要保证形成稳定的流化状态,必须采用溢流装置等,这样又增加了设备结构的复杂性。对于除去结合水分的物料,采用多层流化床是恰当的。例如采用双层流化床干燥含水率15%~30%的氨基匹林;采用五层流化床干燥涤纶树脂,使产品含水率达到0.03%左右,这些都是成功的范例。
(一)多层振动流化床干燥机的工作原理
由安装于主机下部的两个振动电机同步反向回转,使安装于其上的多层环状孔板组成的主机产生垂直振动与扭振,从而使由进料口进入的物料沿水平环状孔板自上层向下层连续跳跃运动。热空气则自下层向上层通过各层孔板穿过物料层,达到物料均匀干燥目的。
(二)性能特点
⑴节约能源。由于物料与热空气相对而行,充分逆向接触,因而较同类型干燥机节省热能30%,节省电能10%。
⑵干燥质量高、效果好。物料沿水平环状孔板跳跃运动,因而不存在局部过热及干燥不均匀现象。物料破碎率低,磨损少,成品含水率低于0.1%。
⑶投资省。由于采用多层叠装形式,物料环状垂直运动,因而结构紧凑,占地面积仅为同类型干燥机的五分之一。而且坚固耐用、密封可靠、维修方便、重量轻。
⑷用途广。物料运动状态和流速可无级调节,因而对原料含水不低于40%,允许温度不超过400℃的粉粒状物料均可适用。
⑸噪音低,隔振性能好。可浮置在楼板上工作,安装、移置十分方便,工作环境好。
⑹生产效率高。物料运动时与热空气多次充分接触,热效率高,因而每小时产量是同类型干燥机的2.2~3倍。
(三)多层振动流化床干燥机的应用范围
本机适用于食品、化工、医药、饲料、饵料、塑料、制盐、粮食、种子、烟、糖、冶金等行业粉粒状物料的干燥、冷却。
三、 圆型干燥机
过去的振动干燥机一般只是利用热空气压型的,或采用一维振动型的。圆型干燥机的特点是在三维振动的单层或多层振动流动槽中,一边使被干燥物连续移动,一边以均匀的风压将热空气送入每个振动流动槽;或者将热空气以连续通过各振动流动槽的方式送进去,因此干燥作业非常简便。
本机是利用三维振动的带有圆型振动流动槽(以下简称流动槽)的干燥机,其主要特性如下:
(1) 可以任意改变流动槽被干燥物的移动速度,以适应干燥速率要求。
(2) 可以任意控制干燥作业的热空气(也有使用冷风的)风量或风压。
(3) 连续干燥作业,所采用的结构可以是单层的也可以是多层的,组合简便。
1.圆型干燥机的工作原理
在本机中有两种工作方法。
首先说明被干燥物的移动方法。被干燥物从连接在产生三维振动的振动机的流动槽的供给口投入,在流动槽的沟槽内绕一周,经过排出口的连接口进入下一个流动槽。以后以同样的方式经过流动槽,从排出口排出,至此已变成干燥物。利用鼓风机将热空气从进风口吹入口入,通过多孔底部与被干燥物接触。干燥作业结束后,热空气从排气口排出。设计中主要着眼于从底部将均匀的风送给各流动槽内的被干燥物,这样可以缩短干燥时间。另外根据干燥条件调节鼓风机的排气阀,就可以控制各流动槽的风量及风压。
第2例与第1例的不同点就是流动槽之间的连接方法的问题。第1例是在流动槽的外侧有排出口和连接口。但第2例只在内侧设有排出口,而没有连接口,这种连接方法对另一种场合也是适用的。热空气流动是热空气从进风口吹入,然后然后依次通过流动槽的底部,从排气口排出。设计采用各流动槽的底部与槽上部紧密相连的方法,使吹入的热空气不会流到沟槽的外部,因此可以提高干燥的热效率。
2.结构特点
流动槽分为被干燥物的通道区和热空气的通道区。被干燥物的通道区(以下简称沟槽)带有多孔式的底部做成同心圆状的沟形槽。底部采用多孔板、筛网及布等,使热空气能均匀地流动,另外底部还可以更换。热空气通道区是为了将均匀压力的热空气送入流动槽的底部而设计的,构成了槽的一部分。
上述流动槽与产生三维振动的振动机电相接,若改变振动机的衡重,就可以改变电机的频率,因而可以任意改变被干燥物的振幅,流向及移动速度,使操作与干燥条件相适应。
过去的流动干燥机虽然是多层的,但设计困难。本机是多层式连续干燥,而且是组合成的。组合的方法是在振动电机上设置热空气调整槽,根据单层或多层的不同情况重叠设置流动槽,zui后装上上盖后,用传送带固定。排出口与连接口的连接由传送带连接。振动槽的层高受振动电机的振动传导能力的限制。
四、载体喷雾流化干燥机
载体喷雾流化床干燥机也称媒体喷雾流化干燥机、惰性粒子流化床干燥机。载体流化床干燥机我国在上世纪80年代就有成功实现工业化的报道,当时用于氧化铁黄的干燥上。该机根据喷雾技术、流化技术的原理设计而成,可以连续干燥浆状或糊状物料。主要有空气过滤器、加热器、流化床、旋风分离器、布袋除尘器、引风机、输料泵和料槽等组成。载体流化床干燥机以圆筒形结构为主,流化床内充填着直径为数毫米的可流化惰性载体(载体材料多用球形、柱形和立方体形的玻璃、陶瓷等材料制成使用较多的为玻璃珠或瓷珠)。故称惰性载体流化床干燥机。
(一)工作原理
在流化床内,空气把载体预热并使载体粒子群处于流化状态,同时由输料泵供料,经喷嘴喷洒到载体表面呈膜状附着,然后分散在流化层内。载体和热空气同时向物料进行传导传热和对流传热使之干燥。由于载体表面积很大,水分在短时间内被蒸发排出。载体表面残留的固体物料在载体之间的相互碰撞中剥落下来,随空气排出干燥机外,通过旋风分离器和布袋除尘器与气体分离。
载体喷雾流化干燥机的特点是降低了喷雾干燥机的高度,可以对浆状物料和高粘度物料(20Pa?s以上)进行干燥。
(二)载体流化干燥机的工业应用
某厂采用喷雾流化载体干燥机进行荧光增白剂的干燥,取得了满意的效果。生产结果表明,这种干燥机具有很高的生产强度(400~500kg水/m2 ? h),热效率高,设备规模小,投资费用低。
(三)载体喷雾流化床干燥机可干燥物料
目前载体干燥机可以干燥下列物料:腐植酸、硅藻土、六氯苯、碳酸铝、高分子胶体、生物胶、氧化铁黄、锌铬黄、分散蓝染料、分散绿染料、荧光增白剂、氯化锂、碳酸钙、炭黑、铁酸盐等。惰性载体、石油催化剂、北豆根(中药)、豆腐渣、豆沙馅、陶土、硫酸钡、钛酸钡、玻璃粉、颜料、表面活性剂、聚苯乙烯脂、煤粉。
(四)载体干燥机的特点
在各种物料状态中,糊状物料的干燥比较困难,适应这种状态的干燥机也很少,而载体干燥机可以完成部分糊状物料的干燥。物料在载体上形成很薄的液膜,而且内外两面受热,故其干燥过程迅速。物料不易过热,所以部分染料及中间体可以用它干燥;对于难干燥的粘性物料,由于在薄膜化条件下干燥,水分扩散将大大加快,同样能达到理想的干燥效果;设备占地面积小,排风温度可以控制很低,因此热效率高。可以取代粉碎、分级过程,缩短生产流程。 同烘箱相比,脱水成本下降4倍,同喷雾干燥相比,设备投资少了许多,可用于喷雾干燥难以处理的糊状物料,
五、振动载体流化床干燥机
当物料喷洒到载体上,能否处于良好的流化状态是连续生产的关键。随着振动技术的发展,给载体干燥机增加振动源能使载体的流化状态大为改善。
(一)工作原理
两台振动电机交叉布置,同步反向运转,使振动机体作垂直振动及扭振。振动载体加在热空气分布板上,在激振力的作用下,沿水平环状热空气分布板上作圆周抛掷运动。这种运动主要由两种运动合成而成,一是振动载体沿圆周方向的扩散运动,二是振动载体在垂直方向的循环与混合运动。因此当湿物料加入床内后,在载体的作用下沿床内环状空间均匀分布和流化,同时湿物料在载体表面形成湿物料薄膜。湿物料薄膜在热载体的内部作用下和热空气外部作用下迅速完成干燥过程,然后在载体相互之间碰撞下变干的湿物料薄膜脱落并被粉碎。达到一定粒度后,随干燥尾气带出干燥机,由系统后部的除尘设备收集。
(二)干燥物性研究
振动载体流化床干燥机具有*的干燥特性,特别是针对液糊状及轻粉状物料而言,具有很高的干燥效率,热能利用率高,这主要是有振动载体的缘故。载体在干燥过程中起到两个主要作用,一是干燥物料的主要介质,二是分散、研磨和粉碎物料。根据物料在床内干燥状态的变化过程,将物料在床内的干燥操作过程划分为三个阶段,由此三个干燥阶段组成了振动载体流化床的一个干燥周期:*干燥段,载体流化和分散物料阶段;第二干燥段,物料干燥段;第三干燥段,载体研磨物料阶段。三个干燥阶段的划分为进一步研究其干燥机理奠定了基础,同时为研究物料在床内停留时间分布提供了依据。
振动载体流化床和振动流化床流化物料的区别就在于,振动载体流化床是借助于载体来流化物料,这就是其干燥的主要特征。对于具有一定粘性的液糊状、轻粉状、易于结团的物料,在振动流化床内无法实现良好的流化状态,会出现死床的现象。而在振动载体流化床内,在载体的作用下物料与载体粘附混合,在载体表面形成湿物料薄膜。湿物料在载体的带动下,在床内形成良好的流化状态,同时载体对物料进行预热。
物料的干燥阶段,是干燥周期的第二阶段,在载体充分流化和分散以后,物料被分散成细小颗粒,或在载体表面形成薄膜。这些细小颗粒沉浮于载体之中,或少量悬浮于载体床层表面之上呈悬浮状态,大块粘接载体的现象没有了。这时物料已进入全面干燥阶段,其间湿物料的湿含量下降幅度zui大,也是zui明显的。
载体流化床是一种节能型流化床。振动载体流化床在干燥物料过程中,基本上是处于恒速干燥阶段。出口空气温度略高于床内干燥物料的平均温度,进出口空气温度相差较大,而且非常稳定,这表明振动载体流化床的干燥过程可以得出这样的结论,载体的加入有利于物料的干燥。首先物料干燥所需的热量来自两个方面,一是热空气的对流传热,二是载体的接触传导传热。其次由于湿物料在载体表面形成物料薄膜,因而使其干燥的有效表面积扩大,这样使物料的干燥强度大大提高了。由于载体比热空气有较大的热容,因此负担着床内大部分的热量,是物料干燥所需的主要热源,另外传热系数比对流传热系数大得多,所以载体与物料充分接触在干燥过程中是非常重要的。
物料的研磨阶段是干燥周期的zui后阶段。物料经过充分干燥以后变成小块状,在载体的碰撞下,研磨成细小颗粒。细颗粒粒径分布达到一定要求被风带出床层,在此阶段物料大量悬浮于载体表面上。
一般情况下,很难将三个干燥阶段严格划分,因为物料在干燥的同时也存在载体研磨物料的现象。对于理想中的两粒载体,这三个阶段的描述比较接近。但在粒子群中,这三个阶段无明显界限。几个现象同时发生,只是量的大小不同而已。
六、粉碎流化床干燥机
粉碎流化床干燥机是在普通流化床干燥机的基础上加装内粉碎机构和强化混合构件形成的。
液态物料无需雾化或加水稀释后再雾化,即可直接加入有底料的粉碎流化床内进行干燥。由于加装的内粉碎机构进行了有效的搅拌,含水率较小的底料与液态物料可快速充分地混合,液体失去流动性同时也通过粘滞区,形成具有一定水分的块状物料或颗粒团,在与干燥介质接触时表面迅速脱水。同时,在粉碎机构的粉碎下,大块物料被迅速粉碎成较小块的物料。在进行粉碎的同时,表面水分继续蒸发,然后再粉碎,再蒸发。直至形成一定粒径的含水率较小的颗粒群置换原来的底料,原来的底料进入普通流化室进行进一步干燥。由于合理配置了粉碎机构,加之强化混合构件的作用,液态物料迅速与干物料混合、脱水并被粉碎成为较小的固体颗粒,因而粉碎流化床内物料能保持稳定的流化状态。液体原料不断加入形成固体颗粒,底料不断被置换而溢流出粉碎流化室,如此形成一种动态平衡,实现了连续的液态物料的流化干燥。粉碎室内物料的混合作用较强,被干燥的液态物料可直接用管道加入粉碎流化床,而无需对其进行雾化。这样加料方式简单,也不易受其固体悬浮物的影响。
通常情况下,粉碎流化床仅在加料侧的*室加装内粉碎机构。*室称为粉碎流化室,其余为普通流化室。在粉碎流化室,液态物料经过上述干燥和粉碎过程,形成了含有一定表面水的粉粒状固体,然后在普通流化室中进行深度干燥。粉碎流化室与普通流化室之间,将布风板以一定的角度向粉碎流化室倾斜,或将整个普通流化室的布风板向粉碎流化室整体倾斜。进入普通流化室的较大颗粒的物料可以返回粉碎流化室被进一步粉碎成更小的颗粒,这样可以避免大颗粒物料在流化床中沉积,使流态化干燥过程更为稳定,并使干燥产品的含水率和粒径更加均匀。
粉碎流化床具有流态化干燥的气固接触均匀、两相相对速度较大、操作连续方便、干燥强度较大、设备简单紧凑等优点。除此之外,由于在粉碎机构的粉碎作用下,物料被粉碎成较小的颗粒,比表面积加大,这样,便提高了干燥强度。另外,在搅拌的作用下,流化床中的气泡被打碎,使粉碎流化床更接近于散式流态化,气固接触更加均匀、有效,提高了传热传质性能。
目前粉碎流化床干燥机出现几种结构,但都未实现系列化,用户可根据物料情况与制造方。
在各种类型流化床中,气体经孔板进入料层,因此产品和气体呈现错流流动,气体除了保持产品流动外,同时也是热量和质量交换的介质。
流化床干燥机引入的热空气有两个作用:一个作用是使物料流态化,在这个作用中空气是作为动力源;另一个作用是给被干燥物料提供足够的热量,同时容纳水蒸汽,此时空气又作为载热体和载湿体。为此所用空气应满足二者的zui大量,这就不可避免造成能源的无端浪费。在流化床中装有可通入热水或蒸汽的加热管或加热板,是一种节能型干燥设备。除由气体带入能量外,有部分热量是浸没式热交换器提供的,因而大大减少了气体流量。由于物料干燥所需大量热量均由加热管或加热板提供,送入的气体仅作为物料的流化动力和带走水分的载湿体之用。据介绍,在相同产量的情况下,所需要的热量仅为无内藏热管的20%,而相应的气量也仅为后者的20%~30%左右。在内置换热器流化床中,气体经过孔板吹向料层,粉状物料和气体呈错流,表现出“流态化”。气体除了促进物料流动外,同时也是热量交换的介质。此外,物料密相区(简称“床层”)内的盘管与物料充分接触,也进行热量交换,经干燥或冷却后的物料溢流排出。
流化床的特征是气体使固体颗粒移动,选择的气体速度要保持产品呈流化状态,而不是将其风动输送。移动的料层就像流体一样,加入的产品连续向流化床的一端移动,在床层的zui低点保持稳定的溢流,使产品排出。
所有颗粒如此稳定地移动,它们整个表面处于交换过程。尽管颗粒剧烈移动,但产品处理温和,无任何明显的磨损。由于出口气体温度一般低于zui高的产品温度,因此该设备具有很高的热效率。本干燥机的特点是干燥和冷却能在单台的联合流化床干燥装置中有效地进行,因此节省费用。
(一)内置换热器流化床的优点
与传统流化床干燥机相比,内置流化床干燥机主要优点如下:
(1)用气量小,鼓风机能耗低,除尘负荷降低30%~40%左右;
(2)热效率高,蒸汽消耗低。物料与干燥介质接触面积大,传热效果好,热效率达75%~80%;
(3)床内温度分布均匀,避免了局部过热,较适合于热敏性物料;
(4)操作灵活,而且弹性大,生产能力高;
(5)该床既可连续操作,也可间歇操作,根据生产需求,可在0%~100%之间调整生产负荷;
(6)停留时间可按实际需要进行调节,此外,低温干燥不易产生静电;
(7)由于其空床气速为0.5~1.0m/s,因此,物料颗粒破碎率低,对设备磨损小;
⑻投资小。该干燥机本身机械运动部件少,装置投资费用低廉,维修工作量小。