浅谈无线测温系统在高压开关柜中的设计与应用选型
时间:2020-08-26 阅读:1298
摘要:针对传统的有线测温方法因无法*解决高压绝缘问题而不能应用于高压开关柜温度检测的问题,设计了种高压开关柜无线测温系统,详细介绍了该系统硬件及软件设计,分析了系统测试过程中存在 的问题并给出了相应的化措施。测试结果表明,系统可稳定地运行于工作环境,满足次安装、2a内无需维护的要求。
关键词:高压开关柜;温度检测;无线网络;ZiBee;JN5148;DS18B20
0 引 言
高压开关柜在运行过程中,柜内触点与母线连接处、动静触头电路发热过大,易引发停电和火灾事故。因此,高压开关柜内温度监测尤其是三相触点温度监测非常重要。
高压设备存在裸露电压,传统的有线温度检测方法因无法*解决高压绝缘问题而不能应用。无线测温系统采用无线电波进行信息传输,不需要布线,与高压设备等电势,不需要采取绝缘措施。因而无线测温系统可解决高压设备测温难题。本文采用ARM 单片机及无线模块JN5148构建星形结构的无线传感网络,结合温度传感器实现高压开关柜关键部位的温度监测。
1 ZiBee技术
ZiBee 网 络 有 协 调 器 (Coordinator)、路 由(Router)和终端(EndDevice)3 种功能器件[2]。2种功能器件具有信息中继功能,称为全功能设备(FullFuctionDevice,FFD),而终端只能接收、发送与本身有关的信息,称 为精简功能设备 (Reduced FuctionDevice,RFD)。ZiBee网络中协调器有且只有1个。ZiBee网络结构有星形、网 状、树 状 3种,如图1所示。其中星形结构具有便于集中控制、易维护、安全等点,因此本文采用星形网络结构。
2 系统总体设计
高压开关柜无线测温系统由测温节点、中心节点、上位机3个部分组成,如图2所示。三相触点、母线连接处的温度是监测重点,每个开关柜内三相触点、3个母线连接处共6个位置各安装1个测温节点。三相触点处测温节点置于静触头上,母线连接处测温节点置于导电臂上,测温节点均用高压绝缘胶布绑扎固定。测温节点传感器与测温部位间涂抹导热硅脂以保证热量的充分传递。测温节点在ZiBee网络中为终端节点。各开关柜内还放置1个中心节点,该节点方面作为ZiBee协调器建立网络、收集数据,另方面作为 Modbus从站响应来自上位机的请求帧,并在现场实时显示监测数据。各开关柜内的6个测温节点和1个中心节点组成个ZiBee星形网络,不同开关柜内的ZiBee网络有不同的网络标号,各自之间不存在信号串扰问题。
测温节点在检测温度的同时,利用无线模块内自带的电压检测功能对节点供电电压进行检测,与温度值同发送。上位机将接收到的温度、电压数据进行处理及存储,并提供查询功能,同时在温度值超过预警值或电压值低于阈值时发出警报。
3 系统硬件设计
3.1测温节点
测温节点是高压开关柜无线测温系统的基本装置,负责采集和发送温度值、电压值。它由 SOC 芯片JN5148、单总线数字温度传感器 DS18B20 和电源模块组成,如图3所示。
图3 测温节点组成
JN5148是由Jennic公司生产的三代超低功耗、高 性 能 无 线 模 块。JN5148 可 支 持 新 的ZiBee协议———ZiBeePRO,休眠电流为2.6μA,通信距离(可视)可达1km,发送电流为15 mA,接收电流为 17.5 mA,工 作电压为 2.3~3.6 V。32位RISC MCU 保证了JN5148强大的处理能力。该系统中应用的JN5148模块自带陶瓷天线,免去了复杂的射频设计环节和高成本的开发测试过程。
DS18B20为 Dallas公司生产的单总线数字温度传感器,采用外接电源的方法供电,温度测量范围为-55~+125 ℃,测量精度为0.5℃,可满足系统测温要求。
电源模块采用锂电池直接供电方式。单节锂电池额定电压为3.6V,容量达2400 mA·h。
3.2中心节点
中心节点结构如图4所示。
中心节点负责接收测温节点传来的信息并上传信息给上位机,同时将信息显示在放置于开关柜柜门上的液晶屏上,以供现场察看。为调整监测、通信参数,中心节点还接有键盘作为输入设备。中心节点工作量大、占用管脚数多,用JN5148 作为核心控制器存在程序不易设计、管脚数量少的缺点,故选用ARM 系列 LPC2132作为中心节点MCU,JN5148仅作为无线传输单元,与LPC2132之间通过串口通信。由于中心节点需要长时间不间断工作,因此,电源采用电网交流供电。
4 系统软件设计
JN5148应用ZiBeePRO协议栈,运行在实时操作系统JenOS 上。JenOS 是由Jennic公司开发的专门应用于无线传感器网络的操作系统。JenOS在调度不同先级的实时任务时具备及时性和灵活性。JN5148的集成开发环 境为CodeBlocks,该软件是Jennic公司提供的代码编辑和编译环境,可在Jennic站上免费下载,从而降低了开发成本。
4.1测温节点软件
测温节点上电后先对硬件进行初始化,然后搜索ZiBee网络,如存在则加入网络,加入网络后即开始进行数据采集、发送等任务。当没有数据采集、发送等任务时,测温节点则进入睡眠模式。JN5148有工作、睡眠、深度睡眠3 种功耗模式,因深度睡眠模式只能通过端口中断触发唤醒,本设计采用睡眠功耗模式,即由实时时钟唤醒。为更及时地发现温度异常情况,测温节点采用动态睡眠机制,即在温度 正常时睡眠时间为设定的基准值,当温度升高时睡眠 时间将在基准值的基础上减小,温度越高睡眠时间越 短,温度回到正常范围后睡眠周期变为设定基准值。睡眠基准值范围为3~600s。相对于温度变化,电池电压的变化较缓慢,故本设计中电压检测周期比温度检测周期大。图5为测温节点软件程序流程。
4.2中心节点的JN5148模块软件
中心节点的JN5148模块在ZiBee网络中作为协调器,上电后先对硬件初始化,然后搜索信道,在 未使用的信道上建立网络,建网成功后即等待终端 加入网络并发送数据,接收到数据后通过串口将数据传给 LPC2132。上位机与LPC2132 之间通过RS485现场总线连接,采用Modbus协议传输信息。上位机作为 Modbus主机,各开关柜内的 LPC2132作为 Modbus从机。图6为中心节点的JN5148模块软件程序流程。
4.3上位机软件
上位机管理软件采用面向对象的 VB6.0开发。上位机将接收到的温度、电压值及对应节点的ID按时间线存储,经过处理后,用户可通过该管理软件查看任意节点在任意时刻的温度值、电压值及其变化趋势图。另外,该软件可在温度值超过预警值或电压值低于阈值时发出报警信号,用户根据节点的ID即可找到有异常情况的开关柜。
5 系统测试与化
为验证高压开关柜测温系统的可行性,笔者对该系统进行了测试。测试过程中发现如下问题:(1)高压开关柜内电磁环境复杂,易对节点尤其是测温节点正常工作产生影响。(2)高压开关柜内存在高压且允许随意中断工作,致使测温节点后期维护不便。
针对以上问题,笔者采取以下措施:(1)软件、硬件抗干扰措施。软件方面,应用数字编码、解码技 术剔除干扰信号,并 加入软件滤波技术,同 时对DS18B20转换温度取3 次平均值以消除随机干扰;硬件方面,JN5148 本身具有金属屏蔽罩,同时加强各级滤波能力以消除高频干扰。(2)软件设计时增加自动重新加入网络功能,保证在中心节点因某种原因重启后,测温节点能自动重新加入网络,无需人工干预。
为计算测温节点锂电池的供电时间,笔者在模拟开关柜环境下,用 TekDPO4054数字示波器电流探头对测温节点的工作电流进行采样,电流曲线如图7所示。
计算测温节点锂电池供电时间的难点在于温度转换时间、温度转换时工作电流及发射时间的获取。如图7所示,在 T0 时刻测温节点从睡眠状态被唤醒,T1 时刻3次温度值转换结束并发送数据,T2 时刻数据发送完毕,测 温节点重新进入睡眠状态。JN5148 模 块 睡 眠 电 流 为 2.6 μA,发 射 电 流 为 15 mA,温度转换时间 T1 -T0、发射时间 T2 -T1分别为1500 ms、10 ms,温度转换时的工作电流I为11 mA。以常规的测温周期为5 min 为例,得到锂电池供电时间为
可得锂电池的理论供电时间约为4.7a。然而实际环境中锂电池存在自放电问题,且电量不可能全部放尽,寿命无法达到4.7a,因此本设计中将运行年限设定为2a。
系统经测试与化后,可稳定地运行于工作环境,而对测温节点锂电池供电时间的验证,表明系统满足次安装、无需维护的要求。
6 安科瑞无线测温系统介绍与选型
安科瑞无线测温监控系统是根据当无线测温系统的要求,在广泛征求用户和专家意见的基础上,充分吸收当内外厂家的成功案例,并结合安科瑞多年来的丰富经验,采用面向对象的分层分布式设计思想,结合自动化技术、计算机技术、网络技术、通信技术而设计的款专业的无线测温软件。
6.1 Acrel-2000T无线测温系统结构
Acrel-2000T无线测温监控系统通过RS485总线或以太网与间隔层的设备直接进行通信(如图8),系统设计遵循标准Modbus-RTU, Modbus TCP等传输规约,安全性、可靠性和开放性都得到了很大地提高。
Acrel-2000T无线测温监控系统具有遥信、遥测、遥控、遥调、遥设、事件报警、曲线、棒图、报表和用户管理功能。可以监控无线测温系统的设备运行状况,实现快速报警响应,预防严重故障发生。
Acrel-2000T无线测温监控系统主要特点是开放式系统结构,硬件兼容性强,软件移植性好,应用功能丰富。该系统具有强大的处理能力,快速的事件响应,友好的人机界面,方便的扩充手段。其软件系统的设计依据软件工程的设计规范,模块划分合理,接口简捷明了,主要包括主控模块、人机界面、图形组态、数据库管理系统、通信管理等几大模块。
6.2 Acrel-2000T无线测温系统功能
■实时监测
Acrel-2000T无线测温监控软件人机界面友好,能够以配电次图的形式直观显示各测温节点的温度数据及有关故障、告警等信息。
■温度查询
温度历史曲线(1分钟、5分钟、60分钟可选)
■运行报表
查询各回路设备运行溫度报表
■实时报警
壁挂式无线测温监控设备具有实时报警功能,设备能够对温度越限等事件发出告警。
■设备提供以下凡种告警/方式:
a.弹岀事件报驚窗口.
b.实时语音报警功能,能够对所有事件发出语音告警.
C.短信吿警,可以向机号码发送吿警信息短信(需选配信猫).
■历史告警査询
Acrel-2000T无线测温监控系统能够对所有吿警事件记录进行存储和管理,方便用户对系统和告警等事件进行历史追溯,查询统计、事故分析。
■用户权限管理
Acrel-2000T无线测温监控系统为保障系统安全稳定运行,设置了用户权限管理功能。
通过用户权限管理能够防止未经授权的操作(如数据库修改等)。可以定义不同级别用户的 登录名、密码及操作权限,为系统运行、维护、管理提供可靠的安全保障。
■定值设置
用于修改高温定值、超温定值。
■WEB(可选)
展示页面显示变电站数量、变压器数量、监测点位数量等概况信息, 设备温度、通信状态,用电分析和事件记录。页显示场站的变压器数量、回路个数、有功功率、无功功率、用电量、事件记录等概况信息,可通过实时监控、变压器、通信模块切换到需要查看的界面。
实时数据曲线可监测各个回路的测点温度、电压、电流、功率曲线信息。
接线图页面通过次图实时反映电气参数变化,包括测量量、信号量等信息(信号量 需要断路器提供辅助触点支持)。
能耗统计页面显示各回路的功率峰值和用电量峰值,功率、电能趋势曲线,电能环比,用电。
运维管理\通信状态显示监测接入系统设备的通信状态。
■手机APP(可选)
设备数据员面显示各设备的电參量数据、温 度数据以及曲线。
6.3 安科瑞ARTM系列无线测温终端产品选型
安科瑞电气接点无线测温方案由无线温度传感器、收发器、显示单元组成。温度传感器直接安装于断路器动触头、静触头、电缆接头、母排等发热接点,将测温数据通过无线射频技术传至接收装置,再由接收器485通讯至测温终端或无线测温系统(如图9)。
6.3.1 安科瑞无线温度传感器
无线温度传感器共有5种,分别对应螺栓固定、表带固定、扎带捆绑、合金片固定等安装方式。针对不同的变电站要求,可根据传感器供电方式以及安装位置的不同,考虑安装方便的因素,选择相匹配的传感器。
物料名称 | 型号 | 参数说明 |
电池型无线测温传感器 |
ATE100 | 电池供电,寿命≥5年;-40℃~+125℃; 2.4GHz,空旷距离10米; 102.37*47.93*23mm,φ13.5mm(长*宽*高,孔径)。 |
ATE200 | 电池供电,寿命≥5年;-40℃~+125℃; 2.4GHz,空旷距离10米; 44.17*30*18.5mm,L=325.40mm(长*宽*高,三色表带)。 | |
ATE300B | 电池供电,寿命≥5年;-10℃~+125℃; 470MHz,空旷距离150米; 49.95*35.95*22mm(长*宽*高)。 | |
CT取电型无线测温传感器 |
ATE300 | CT感应取电,启动电流≥5A;-10℃~+125℃; 470MHz,空旷距离150米; 扎带固定,合金片取电;73*33.5*16mm(长*宽*高)。 |
ATE400 | CT感应取电,启动电流≥5A;-50℃~125℃; 433MHz,空旷距离150米; 合金片固定、取电;三色外壳;25.82*20.42*12.8mm(长*宽*高)。 |
6.3.2 安科瑞无线收发器
无线测温收发器共有3种,通过无线射频方式接收温度数据。收发器根据不同的传感器型号进行匹配,同时传感器的传输距离决定接收装置能否多柜接收。
物料名称 | 型号 | 参数说明 |
无线收发器 | ATC200 | 可接收12个ATE100/200 |
ATC400 | 可接收240个ATE300/ATE300B | |
ATC450-C | 可接收240个ATE400 |
6.3.3 安科瑞显示终端
显示装置通过RS485连接收发器,可嵌入式安装于柜体上,若柜体开孔不便,也可选择壁挂式安装于配电室内。方便操作人员现场及时查看电气节点实时温度的同时,也可以通过RS485或以太网通讯的方式在后台系统查看现场情况。
物料名称 | 型号 | 参数说明 |
显示终端 | ARTM-Pn | 面框96*96*17mm,深度65mm;开孔92*92mm; AC85-265V或DC100-300V供电; 路上行RS485接口,Modbus协议; 接收多达60个ATE100/200/300/400;配套ATC200/300/450。 |
显示终端 | ASD320 ASD300 | 面框237.5*177.5*15.3mm,深度67mm;开孔220*165mm; AC85-265V或DC100-300V供电; 路上行RS485接口,Modbus协议; 接收多达12个ATE100/200/300/400;配套ATC200/300/450。 |
显示终端 | ATP007 ATP010 | 面框226.5*163*6mm,深度70mm;开孔215*152mm; DC24V供电;路上行RS485接口;路下行RS485接口; 接收20个ATC200/1个ATC400/1个ATC450-C。 |
无线测温集中集中采集设备 | Acrel-2000T/A | 壁挂式安装 标配路485接口、路以太网口 自带蜂鸣器告警 柜体尺寸480*420*200 (单位mm) |
无线测温监控设备 | Acrel-2000T/B | 硬件:内存4G,硬盘128G,以太网口 显示器:12寸,分辨率800*600 操作系统:Windows7 数据库系统:Microsoft SQL Server 2008 R2 可选Web平台/APP服务器 柜体尺寸为480*420*200(单位mm) |
7 结语
高压开关柜无线测温系统采用片上系统高性能、低功耗无线微控制器JN5148 与数字温度传感器 DS18B20为基本元件组建ZiBee无线系统,避免了复杂的现场布线过程,解决了高压开关柜不易绝缘的问题。该系统通过现场总线与上位机通信,实现了高压开关柜的远程实时温度监测。
【参考文献】
[1] 王福凯,兰西柱,董瑞琦,李海洪,赵殷瑶.高压开关柜无线测温系统设计[J].工矿自动化,2012(7):108-112.
[2] 孙科,肖宾杰.ZigBee技术在测温系统中的应用[J].测控技术,2008(1):36-38.
[3] 安科瑞企业微电网设计与应用手册.2019.11版.
作者简介:缪建梅,女,安科瑞电气股份有限公司,主要从事电气防火限流式保护器的研发与应用