品牌
其他厂商性质
上海市所在地
HypoxyLab™是一款结构紧凑,HEPA过滤,精密控制的低氧环境的工作站。
HypoxyLab为各种以细胞为基础的研究领域创造适合的、无污染的低氧条件。
应用领域包括肿瘤生物学,放射细胞生物学,心血管研究,细胞凋亡,神经科学,干细胞研究,多学科的药物开发和蛋白质组学。
真正的低氧复制
HypoxyLab™是调节培养环境中氧气分压的低氧工作站,从而提供尽可能高精度的真正的低氧培养。,氧气对细胞的有效性是“看”氧分压的值。氧分压不仅随着氧气浓度的变化而改变,而且还与海拔和天气相关。 HypoxyLab是真正的革命性产品,它直接调节工作站内氧气分压的来提供低氧环境。我们用传感器来测量氧气而不补偿浓度百分比来就可以表示低氧。
HypoxyLab以mmHg或kPa为单位表达工作站内的氧环境,而对变化的气候和海拔条件不敏感。这一*的科学方法使得HypoxyLab的准确性增强,相比其他的设备高出30%以上,这依赖于我们的其他补偿技术。由此,无论您的实验室位于世界何地,都能够确保提供精确的低氧环境。
测量的金标准
对于那些要求原位氧测量“金标准”到细胞生长的精确位置或所在层,HypoxyLab提供了一个可选的内置 OxyLite™ 模块来直接实时的进行细胞培养介质中的溶解氧测量。HypoxyLab具有工作站专用OxyLite传感器连接器。当连接一个OxyLite 探头,定位在培养基中,其溶解氧精确浓度值会自动地显示在HypoxyLab的触摸屏上并记录在存储卡中,显示屏同时显示的还有工作站的氧气分压,二氧化碳,温度和湿度。可以方便地把这些数据以LabChart™兼容格式记录到到USB闪存盘中,可用来做进一步的离线分析.
真正的低氧复制
直接从细胞培养基中检测氧气
污染可控制的环境
的精度
轻便的上盖
简洁大方的台式外观设计
规范采用氧分压来衡量真正的低氧模拟在体氧环境
快速到达的低氧环境以及极底的气体消耗
HEPA过滤标准,可随意更换,操作简易
符合人体工程学设计
直观便捷的触摸屏
可选模块 OxyLite™ 可检测培养液内部任意点位的溶解氧
可选微型电子显微镜
(Updated: June 2021)
Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Maury P, Porcel E, Mau A, Lux F, Tillement O, Mahou P, Schanne-Klein MC, and Lacombe S (2021). Front Bioeng Biotechnol. 2021 Feb 16;9:574035. doi: 10.3389/fbioe.2021.574035. eCollection 2021
Differentiated cells in prolonged hypoxia produce highly infectious native-like hepatitis C virus particles (2021). Cochard J, Bull-Maurer A, Tauber C, Burlaud-Gaillard J, Mazurier F, Meunier J-C, Roingeard P and Chouteau P. Hepatology. 2021 Mar 4. doi: 10.1002/hep.31788. Online ahead of print
Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo (2021). Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O & Riemann A. J Exp Clin Cancer Res, 40:10
SMARCB1 Promotes Ubiquitination and Degradation of NR4A3 via Direct Interaction Driven by ROS in Vascular Endothelial Cell Injury (2020). Lu B, et. al. Oxid Med Cell Longev. 2020 Oct 23;2020:2048210
Hypoxia Drives Dihydropyrimidine Dehydrogenase Expression in Macrophages and Confers Chemoresistance in Colorectal Cancer (2020). Malier M, Court M, Gharzeddine K, Laverierre M-H, Marsili S, Thomas F, Decaens T, Roth G & Millet A. /content/10.1101/2020.10.15.341123v1
Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts (2020). Kozlov AM, Lone A, Betts DH & Cumming RC. Nature Scientific Reports 10, 8388
Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia (2020). Tregubab PP, Malinovskayaa NA, Morguna AV, Osipovaa ED, Kulikovb VP, Kuzovkova DA, and Kovzelevc PD. J. Resp 278, 103442
Inhibition of Carbonic Anhydrase IX by Ureidosulfonamide Inhibitor U104 Reduces Prostate Cancer Cell Growth.... (2019). Riemann A, Güttler A, Haupt V, Wichmann H, Reime S, Bache M, Vordermark D and Thews O. Oncology Research
Proteomic Analysis of Human Macrophage Polarization Under a Low Oxygen Environment (2019). Court M, Malier M and Millet A. J. Vis. Exp.
The effect of hypoxia on ZEB1 expression in a mimetic system of the blood-brain barrier (2018). Leduc-Galindo D, Qvist P, Tóth AE, Fryland T, Nielsen MS, Børglum AD and Christensen JH. Microvascular Research
Acidic extracellular environment affects miRNA expression in tumors in vitro and in vivo (2018). Riemann A, Reime S, and Thews O. Int J Cancer
Induction and Assessment of Hypoxia in Glioblastoma Cells In Vitro (2018). Gagner JP, Lechpammer M and Zagzag D. Methods Mol Biol.
Tumor Acidosis and Hypoxia Differently Modulate the Inflammatory Program: Measurements In Vitro and In Vivo (2017). Riemann A, Reime S and Thews O. Neoplasia
Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1 (2017). Kulkarni A, Mateus M, Thinnes CC, McCullagh JS, Schofield CJ, Taylor GP and Bangham CRM. Cell Chemical Biology